GARANT Master INOX solid carbide torus cutter HPC DIN 6535 HB, TiAIN, Ø DC / R1: 8/0,5 mm ### Order data | Order number | 206347 8/0,5 | |--------------|---------------| | GTIN | 4045197852403 | | Item class | 11X | # **Description** #### **Version:** Dimensions similar to DIN 6527. HPC milling cutter with **newly developed high-performance coating.** For **outstanding tool life** and **optimum metal removal rate** in a very wide range of stainless steels. Can be used at **high cutting speeds**, particularly suitable even for TOOLOX®. ## **Advantage:** # Greater oxidation resistance and high-temperature hardness. No. of teeth Z: 4 Helix angle: 40 degrees Shank: DIN 6535 HB to h6 No. of teeth Z: 4 Flute length L_c: 16 mm Corner radius R₁: 0.5 mm Overhang length L₁ incl. recess: 27 mm Recess Ø D₁: 7.5 mm Overall length L: 63 mm # **Technical description** | Flute length L _c | 16 mm | |---------------------------------|--------| | Overhang length L₁ incl. recess | 27 mm | | Corner radius R ₁ | 0.5 mm | | Cutting edge Ø D _C | 8 mm | | Recess Ø D ₁ | 7.5 mm | |---|--| | No. of teeth Z | 4 | | Shank | DIN 6535 HB to h6 | | Overall length L | 63 mm | | Feed f_z for side milling in INOX > 900 N/mm ² | 0.04 mm | | Shank Ø D _s | 8 mm | | Feed f_z for copy milling in stainless steel > 900 N/mm ² | 0.048 mm | | Helix angle | 40 degrees | | Series | GARANT Master INOX | | Coating | TiAIN | | Tool material | Solid carbide | | Standard | Manufacturer's standard | | | | | Type | N | | Type Tolerance nominal Ø | N
h10 | | • • | | | Tolerance nominal Ø | h10 | | Tolerance nominal Ø Helix angle characteristic | h10
unequal spacing | | Tolerance nominal Ø Helix angle characteristic Spacing of the cutters | h10
unequal spacing
unequal spacing | | Tolerance nominal Ø Helix angle characteristic Spacing of the cutters Direction of infeed | h10 unequal spacing unequal spacing horizontal, oblique and vertical | | Tolerance nominal \varnothing Helix angle characteristic Spacing of the cutters Direction of infeed Cutting width a_e for milling operation | h10 unequal spacing unequal spacing horizontal, oblique and vertical 0.3×D for side milling | | Tolerance nominal \varnothing Helix angle characteristic Spacing of the cutters Direction of infeed Cutting width a_e for milling operation Cutting width a_e for milling operation | h10 unequal spacing unequal spacing horizontal, oblique and vertical 0.3×D for side milling 0.05×D for copy milling | | Tolerance nominal \varnothing Helix angle characteristic Spacing of the cutters Direction of infeed Cutting width a_e for milling operation Cutting width a_e for milling operation Through-coolant | h10 unequal spacing unequal spacing horizontal, oblique and vertical 0.3×D for side milling 0.05×D for copy milling no | | Tolerance nominal Ø Helix angle characteristic Spacing of the cutters Direction of infeed Cutting width a _e for milling operation Cutting width a _e for milling operation Through-coolant Machining strategy | h10 unequal spacing unequal spacing horizontal, oblique and vertical 0.3×D for side milling 0.05×D for copy milling no HPC |